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Abstract
Problem definition: In this paper we look at the optimal design of sliders for firms using them to solicit offers. The proliferation of mobile and app-based selling has resulted in shifts in how prices are solicited from consumers as typing has been replaced by tapping and sliding. The early shift to mobile selling was pioneered by many firms in the travel industry.  The use of sliders to solicit bids from customers is gaining in popularity. Air Canada and Aer Lingus, to name two, use sliders as a mechanism to solicit bids from customers who might be interested in upgrading from Economy Class to First Class. Priceline was an early innovator in the selling of services online with the launch of its name-your-own-price model for the selling of airline seats, rental cars and hotel rooms in 1998.  In 2009 Priceline further innovated its model through the launch of its Negotiator app. A focal point of the app was the use of a slider as the price input mechanism.  Prior to the slider, consumers were provided very little feedback or guidance on suggested bids or offer prices. The advent of the slider directly grounds the offer by the endpoints of the slider.  Given the success of Priceline’s slider and its name-your-own-price format numerous firms have adopted the use of sliders to receive offer prices for goods, services, or upgrades.   Methodology/results: Explicit Nash Equilibria are derived for the cases where the customer perceives the threshold beyond which a bid will be accepted as the value of a uniform or triangular random variable.  To the best of our knowledge, our paper is the first to analytically tackle this important change in offer solicitation which is undoubtedly going to become increasingly important as mobile commerce increases. Managerial Implications: Our results show that firms can both increase consumer participation (making offers) and firm revenue through the optimal design of slider settings. We look at two settings: one similar to Priceline where the goal of the platform is to maximize its revenue rate; and the second, more typical of an individual service firm, where the goal of the supplier is to maximize total revenue from constrained supply (e.g. a limited number of first-class seat upgrades).

1. Introduction	In 1998 Priceline launched its name-your-own-price (NYOP) mechanism for the soliciting of offers for airline tickets.  Following the success of airline tickets, Priceline extended the NYOP model to accept reservations for other services including car rentals and hotel rooms. In the NYOP format, consumers bid for a service, if the bid exceeds supplier provided thresholds it is accepted.  Priceline doesn’t set the bid thresholds, but rather checks thresholds provided to it by suppliers (hotels, airlines etc.) after bids are placed by consumers. More details on the process followed by Priceline can be found in Anderson (2009).   Following the introduction by Priceline, through the launch of its Negotiator app in 2009, sliders have become a popular method to solicit offers for goods and services from consumers. Figure 1 displays two forms of sliders used to solicit offers from customers; Panel A displays a slider used to make offers on hotel rooms, whereas Panel B allows Air Canada customers to make offers for upgraded seats. 
	Figure 1:  Offer Solicitation via Sliders
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a) Priceline Negotiator app
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b) Air Canada’s Seat Upgrade


In the case of Priceline, the platform uses the slider to simplify data entry by the consumer (slide versus type) and then checks these offers or bids against prices supplied by suppliers to see if the offer is accepted.  Air Canada uses the slider to collect offers for seat upgrades but decides on its own if the offer should be accepted. (This is also used on other airlines…e.g., Aer Lingus and Icelandic Air.) As is obvious from Figure 1, the sliders will have upper and lower limits – the prices corresponding to these limits will then impact consumer bids and firm/platform revenues.  In the following, we outline how the limits of sliders should be set under a series of different assumptions about consumer perceptions of the chance their offers will be accepted (given the slider design).  We look at setting slider limits under settings where, like Priceline, the offer acceptance policy is up to suppliers and not the platform as well as those like the Air Canada setting where the number of offers is finite (only those who have bought an economy seat may submit an offer for an upgrade) and the number of products is limited to the finite number of unsold business class seats. 

[bookmark: OLE_LINK1][bookmark: _Hlk115342886]2. Background	The focus of our paper is the optimal design of sliders for offer/bid solicitation. We briefly highlight some of the auction literature with a focus on the simultaneous use of auctions and posted prices as the initial use of sliders has been pioneered by Priceline’s auction model.   Given the origins of slider use (with Priceline’s NYOP model) we also highlight the opaque selling literature. Auctions have long been used for the selling of goods and services and quickly became popular as forms of selling on the internet, popularized by the success of eBay.  Krishna (2002) provides a detailed review of auction theory with Rothkopf and Whinston (2007) reviewing the auction literature as it relates to operations.  More recently interest has focused on the simultaneous use of auctions and other posted price forms of selling.  Etzion et al. (2006) is one of the few auctions related papers that looks at the simultaneous use of auctions and posted prices as they show that the simultaneous use of posted price selling and online auctions leads to a significant increase in sellers’ revenue. Like our development they look at a firm with excess supply facing consumers who strategically choose to purchase at posted prices or bid (resorting to posted prices if their bid fails).  Van Ryzin and Vulcano (2004) look at firm using posted prices as well as an auction mechanism, they assume customers exogenously choose a purchase mode whereas in our analysis we assume customers will make offers and if offers are unsuccessful, they will purchase via posted price channels.  Similar to Anderson and Xie (2014), Sun (2008) shows that the simultaneous use of posted price selling, and online auctions increases segmentation of customers and increases firm revenue.  Interestingly, Sun (2008) argues that in posted price selling there is no price uncertainty but rather uncertainty in the product availability, whereas auctions have price uncertainty and as a result no single selling form is dominant.  Another stream of literature, which while focusing on the use of auctions and posted price channels deals with inventory allocation policies versus specifically focusing on prices themselves. Huang and Sosic (2017) and Caldentey and Vulcano (2007) both assume customers arrive according to Poisson processes and focus on dynamic inventory management strategies for the seller.  Similarly, Huh and Janakiraman (2008) illustrate the optimality of (s,S) inventory management policies for firms using several different selling mechanisms (including name-your-price mechanisms) in settings where firms can replenish inventory at prescribed costs. Cai et al. (2009) investigate the potential benefits of a NYOP retailer in addition to a posted price channel with consumers allowed to return to posted price channels upon failed bid attempts. To the best of our knowledge, there does not exist any literature related to sliders as an offer input form for auctions in general.
Anderson (2009) provides a detailed background on the nature of Priceline’s NYOP model as well as a dynamic programming-based model for the setting of prices by firms on Priceline.  Fay (2004) develops a stylized model of a monopolist firm using a NYOP channel and investigates whether repeat bidding should be allowed. Fay indicates that partial repeat bidding, i.e. repeat bidding by knowledgeable customers may be less profitable than complete repeat bidding.  Fay (2008) extends the monopolist model to a duopoly model with firms pricing into two consumer segments. One segment is loyal to a particular service provider, the second has preferences distributed between the two firms along a line as in the traditional Hotelling model (Hotelling, 1929).  Shapiro and Shi (2008) extend the model of Fay (2008) to N firms with the number of firms indicating the degree of opacity as uncertainty in knowledge of service provider increases with number of firms. Shapiro and Shi focus on providing a rationale for opaque selling. They explain why service providers are willing to distribute products through opaque travel sites such as Priceline and Hotwire and lose the advantage of product differentiation. 
Much of the opaque selling literature takes a view like ours and bases customer behavior (and the offers they make) upon a heterogeneous valuation or reference price for the good or service in question.  Under most settings, buyers are assumed to have a reservation price, the maximum price at which the buyer will consider buying an item, which typically follows a uniform distribution. Fay (2004) models this reserve price as the value of a uniform random variable over an interval [a, b]. Cai et al (2009) suppose that a bid of x costs a buyer x+𝜃, where 𝜃 is uniformly distributed over an interval [c, d] and represents the disutility to the customer of bidding on the opaque channel. Wang et al (2009) assume that the reservation price for a customer is uniformly distributed over the normalized interval [0, 1].  Almadoss and Jain (2008) consider the case where a basket of items may be bid on either singly or individually and assume that valuations are uniform over [0, 1] and additive over items. There are some papers that do not require a uniform reservation price.  Terwiesch et al. (2005) allow for multiple bids with a transaction cost, which may be different for different customers, associated with making a bid. They assume a discrete model where there are a fixed number of possible reserve price-transaction cost combinations, each with a known fixed probability. Wilson and Zhang (2008) allow for a completely general reservation price distribution.
To the best of our knowledge our paper is the first to model and analytically optimize sliders as a form of data entry for firms selling goods or services to consumers.  Similar to prior literature, we make assumptions around customer reference prices, with customers deciding what their offer should be by minimizing their expected cost of good or service acquisition as they manage the tradeoff between bidding and paying regular prices in the event that their bid fails.  In addition to reference price distributions, we make assumptions around consumer interpretations of the slider, specifically around how they view the probability of an offer being accepted as a function of slider design, i.e. slider endpoints and starting position.  Lastly, as platforms like Priceline act as intermediaries between consumers and suppliers, they often do not directly control prices but rather facilitate connecting both sides of the network.  As such, we allow for distributional assumptions around prices or offer thresholds supplied to the platform by suppliers (removing these thresholds further simplifies our model).  We are able to provide analytical insights for distributional assumptions consistent with the literature as well as numerical insight under less restrictive assumptions.

3.  Model	In the following section we outline and develop our model.  For clarity of presentation, we develop the model from the standpoint of a platform like Priceline that is facilitating offers for a product or service. We later extend the framework to that a service provider, such as Air Canada, that is soliciting offers for its own capacity constrained good or service.
Consistent with Priceline, we assume that customers submit a single bid or offer for a good or service and that the offer is submitted via a slider. We will let  denote a vector that provides the relevant characteristics of the slider. For instance, if the slider consists only of a beginning point  and an end point , then . If the slider consists of a beginning point , an end point  and in itermediate point  where a slider pointer is initially placed, then . The retailer’s goal is to set the values in  to maximize expected profit.  Customers perceive that the lowest bid that will be accepted is the value of a random variable  with a density function .  As the platform does not control which bids are accepted, but rather brings together consumers and suppliers, the platform has a distribution for bids that will be accepted by suppliers.  Let T denote the random variable for the threshold above which bids are accepted by suppliers, with density function .  Since customers are heterogenous, they are assumed to have a reserve or reference price distribution for the service offered and we represent this by the random variable R with a density .  If a customer’s bid is rejected, let H be the price at which a customer can obtain service without bidding and will do so if the bid fails. 
We assume that customers behave optimally, i.e. choose a bid that minimizes their expected cost.  A customer believes that a bid of  is successful if the threshold for the retailer is below , i.e.. The customer will pay the full retail price , upon offer failure, when . A customer’s expected return  when placing a bid   equals
				(1)	
Thus, a customer’s optimal bid, , for a customer with reserve price  and the slider design values are the elements of , is given by . Note that  is an increasing function of  while  is a decreasing function of . Thus, in general, there is a unique value that minimizes (1). We differentiate (1) with respect to  to obtain  Thus, the optimal bid   satisfies
.				(2)	
Using (2) results in an optimal customer bidding strategy that follows what we will call a threshold policy.  Consider a person with a reference price (or maximum amount they are willing to spend through the bidding process) of . If this is small relative to the value of the product or effort, the customer might reasonably assume that the chances of obtaining the product are low and, consequently bid the total amount . If, on the other hand,  is large, the customer might reasonably bid less than   thinking that this will have a high probability of the product being obtained.   We define a “ - threshold” strategy to be one where the customer will bid the reserve price if it is less than  and will bid  otherwise. The threshold  a customer chooses will generally be a function of the perceived chance of a bid being accepted, the random variable , and the outside option .  In the sequel we explicitly find and prove the optimality of  - threshold strategies for different cases. We will often write the threshold as  to explicitly convey that the threshold chosen by the customer is a function of the slider values in . We will also naturally assume that  is an increasing function of  and that at any  the associated value of  is no smaller than . (Indeed, we prove that this is the case for the case where the customer believes the threshold above which bids will be accepted is distributed as a uniform or a triangle random variable over the slider interval.) For a given  and given values of   other than the first element, we will let  (where we neglect the  for notational convenience) denote the value of  such that .

3.1 Expected Return to the Retailer In this section, we provide general formulations for the retailer’s expected return and for appropriate first derivatives required in subsequent sections. We assume the bids the platform can accept are determined by the goods or services provided to it by it supply partners. Consequently, we assume that the threshold above which a bid will be accepted by the platform (as dictated by inventory/pricing provided by suppliers) is a random variable drawn from a distribution with a density function given by . For example, at Priceline,   would be determined by its hotel partners since once a bid for a room is received, the company queries prices supplied to its platform by hotels to see if the bid would be accepted thus giving rise to a distribution over the threshold in each case (Anderson, 2009). 
A customer with a reserve price of  will bid  which will result in revenue of  to the retailer, where  is the threshold above which the supplier accepts bids. Thus, the expected return to the platform from a customer with a reference price of  equals . So, the retailer or platform chooses the values in   to maximize }, where  and  denote the expected value operators for the random variables  and , respectively. 
If a customer is following a  - threshold strategy, the contribution to the retailer’s expected revenue from a customer who bids a reserve price less than  is given by
 			(3)
where s1 is the starting point of the slider and lowest value for which bids are received.  The contribution of the retailer’s expected revenue from a customer who bids the threshold  is given by
 		(4)
The retailer’s total expected revenue from a customer who is using a  -threshold strategy is thus We will assume for the upcoming sections that  and  are continuous density functions with support over the intervals  and ).  It will be useful to be more explicit about the form of  depending on the values of  and the relationship to the intervals  and . For now, we are only interested in examining the behavior of the expected return as a function of the lower slider value . (We prove later that this will suffice for the case of only two slider points and three slider points when the customer believes the threshold to be uniform or triangular, respectively.) In Theorem 1, we only look at  for which   since it makes no sense for the customer to take a threshold larger , the largest possible reserve price) and we will ultimately consider a customer’s optimal strategy. The proof of Theorem 1 is in the Appendix but it follows by applying (3) and (4).

Theorem 1	For a feasible , i.e. , the following provide expressions for the expected returns to the retailer when the customer is following a -threshold strategy.
[bookmark: _Hlk116216325](a) If  , then
(5)
and
 				(6)
 (b) If   , then
		  				(7)
and
		 				(8)
[bookmark: _Hlk84319590]We will want to investigate the behavior of the derivative of , i.e. .  Corollary 1 below provides the quantities  and . (The proof is in the online Appendix.) 

[bookmark: _Hlk115857992]Corollary 1	(a) Suppose that   satisfies , then 
			(9)
(b) Suppose that  satisfies , then
				(10)
The possible boundary points where  or  and where  are where, from Theorem 1,  may change functional form. By inspection of Theorem 1, the values of   match at these transition points. Moreover, the slopes at these points of transition they are identical for the functional form to the left and the right of the transition points. (The proof follows from Corollary 1,  and replacing  with  in Corollary 1(a) and with  in Corollary 1(b). Note that this latter is explicit in (2 below))
[bookmark: _Hlk116037397]On evaluating (9) as  approaches from the left or right we obtain the useful result that 
				(11)	
Similarly, evaluating (10) at :

 								(12)
Thus, for instance, even though  may have a different functional form for  than , the derivatives at  are identical. Note also that, from (9) and (10), for ,  and . Thus, the total derivative 
 			(13)
This means that the value  can be excluded from consideration when looking for an optimal .

3.2 The Retailer’s Objective Function & Partial Derivatives for Uniform   and . A number of authors have looked at scenarios where  follows a uniform distribution over an interval  to , e.g. Fay (2004). We will follow this practice for the rest of this paper. A customer will not bid more than the outside option . So, we will make the obvious assumption that R is distributed over the interval  to . In Corollary 2 we provide  an explicit result for the optimal return to the retailer when the customer is following a particular  - threshold strategy. In Corollary 2, we assume that  because as will be seen later it is suboptimal for the retailer to do otherwise. As Corollary 2 will show, the expected returns to the retailer depend on the relationship of  to  and .
It should be noted that a  – threshold strategy with  always loses since only bids larger than  are accepted. Also, a   – threshold strategy with  will not be successful since bids less than are not successful. A customer will not follow a   – threshold strategy with  since  is the smallest possible bid.
Define auxiliary quantities  and  as follows:  and Define functions ,  and  as follows:



The functions  and  are well-defined for all values of . Corollary 2 shows that they represent the expected return to the retailer for certain ranges of the parameters. (The proof follows from Theorem 1 and is in the Appendix.) The -strategy followed by the bidder will depend on the values of . For instance,  is a strategy we will encounter in the next section. So, e.g., in Corollary 2 below the statement  would then correspond to .

Corollary 2	Suppose customers follow a – threshold strategy (, ) where the beginning point of the slider satisfies  and the end point ). Then,
	(14)
[bookmark: _Hlk115881615]As can be seen from Corollary 2, there can be up to three different functional forms for the expected return to the retailer corresponding to three different ranges of . (An explicit example of this is provided later in Example 1.) For valid values of  transitioning from below  to above , Corollary 3 provides the common derivative of  and . Similarly, for valid values of   transitioning from below  to above , the common derivative of  and  is provided.  (The proof follows from (11), (12) and Corollary 2 and is in the Appendix.) 

[bookmark: _Hlk116038350][bookmark: _Hlk115882648]Corollary 3	(a) Suppose that  , then  

(b) Suppose that . Then,	

Note that  and  cannot both be the expected return at . However, as will be seen in the proof of Theorem 2, the behavior of both functions at  will be useful in determining an optimum . We know that we take  no smaller than . Corollary 4 shows that the functions  and   are non-decreasing at  whenever  is non-negative. (Note that  and  >) The result is obtained by differentiating  and  and evaluating at .

Corollary 4


3.3 Optimal Retailer Strategies for Uniform   and  when  In this section, we consider a particular class of threshold strategies, those where . These are important because, as will be seen, they encompass customers’ optimal strategies for the cases where  is either a uniform or triangular random variable.  First note that possible values of  may be restricted to    . (A value of  would result in . However, there are no reserve prices between  and   in this situation. So, taking  is sufficient.) Note also that  since .
The ranges (when they are non-null) that need to be considered for  are 
(a)  to  when 
(b) ,  and  when  and 
(c) , and   when  and 
For case (a) the expected return to the retailer is given by  . For case (b), the expected returns to the retailer (when the intervals are non-null) are given by ,  and by  for the respective ranges. For case (c), the expected returns to the retailer (when the intervals are non-null) are given by   and  for the respective ranges.  Insert  into the definitions for the  and simplify to get the following:
(i)  is a cubic polynomial in  with a leading coefficient equal to the negative value  
(ii)  is a cubic polynomial in  with a leading coefficient equal to the negative value 
(iii)   is a quadratic polynomial in  with a leading coefficient equal to the negative value 
We will refer to  and  as negative cubics and  as a negative quadratic. Their shapes will be important in determining the optimal values for the slider.
First, we define two ancillary quantities as follows
, and  Them define ,   and  as follows

 and   The quantities  and  are the local maxima (second critical points) for the negative cubic polynomials  and  while  is the maximum of the negative quadratic . Theorem 2 contains the optimal strategy to the retailer. The proof uses Corollaries 3 and 4 extensively. For instance, consider case (b) with . The expected returns to the retailer are given by  for  up to , and  for  in . From Corollary 4, is increasing at . So, if  is increasing at , for instance, then (because   is a negative cubic) it must be increasing over the range  to , So a maximum for  cannot occur in the interval [,). (The full proof is in the Appendix.)

Theorem 2	Suppose that the customer is following the  threshold strategy. Then the optimal strategies for the retailer are as follows.
(a) If , then the optimal .
Assume that .Then the following hold.
(b) If  , the optimal   is 
(c) Suppose that . If , the optimal   is 
(d) Suppose that . If  then the following hold.
(i) If  (m+1), then the optimal is at max (.
(ii) [bookmark: _Hlk116392597]If  (m+1) and   then the optimal is at max( .
(iii) [bookmark: _Hlk116388869] If  (m+1) and then  the optimal is at . 
3.4 Optimal Consumer Strategies when  is Uniform In this section, we assume that the retailer only sets the end points of the slider, i.e. . The customer interprets the random variable  to be the value of a uniform random variable over the range  to  which, as we will see, results in a special case of the threshold policy . In Theorem 3, we provide the optimal strategy when  is assumed to be distributed as a uniform random variable over the range  to . (In other sections, we consider other distributional assumptions for .)

Theorem 3	It is optimal for a customer who believes that the acceptance price is uniform over to   to follow a    - threshold bidding strategy.
Proof	Suppose that customers perceive the threshold, above which a bid will be accepted to be uniformly distributed over .  A bid will have a probability   of being accepted. From (1), a customer will place a bid to minimize (1), i.e. choose a bid b to minimize  . Differentiate with respect to b to obtain . This is negative from b= to   then positive, so the expected cost is minimized at  . Thus
	 ).
	(15)


4. Optimal Slider Design	In the following, we use prior results for both optimal retailer and optimal consumer policies in the design of the optimal slider. The setting of the slider values involves a tradeoff between gaining some low reserve price customers and having some high reserve price customers bidding lower than they might otherwise. A low value of  results in capturing more of the low reserve price customers at the potential loss of customers whose reserve price is larger than . Finding the “sweet spot” for the retailer is the objective of the retailer.

4.1 Optimal Slider Design under Uniform Distributional Assumptions 	Theorem 3 established that a  -threshold strategy with   minimizes a customer expected cost if the customer perceives the threshold to be uniformly distributed over [. We substitute this value for  into Corollary 2 to explicitly obtain the expected returns to the retailer. Lemma 1 limits the range of values that the retailer needs consider for  while Corollary 6 builds on this and provides explicit results for the optimal .

Lemma 1	If the customer is following an optimal strategy, the retailer need only consider values of  satisfying   and can assume the optimal upper value is .
Proof	 Note that under the uniform distribution assumption, the customer’s optimal strategy, the    – threshold strategy, does not involve . Taking     would mean the retailer is needlessly missing out on those who might have reserve prices between   and     since customers with those reserve prices have no incentive to bid larger than . Thus, without loss of generality, we can assume that  , recalling that H is the outside option in the event of a failed bid.
If  >, then . But  is the maximum reserve price. So, here, without loss of generality, can take  in this case. So, we can assume that . We provide the retailer’s optimal strategy in Corollary 5. The proof is a straightforward application of Theorem 2.

Corollary 5	The optimal strategy for the retailer when the customer is following a -threshold strategy is as follows.
(a) Suppose that If , then the optimal max(
Assume that . Then the following hold.
(b) If  , the optimal   is 
(c) Suppose that . If , the optimal   is 
(d) Suppose that . If , then the following hold. 
(i) If  then the optimal is at max(.
(ii) If   and   then the optimal is at max( .
(iii)  If   and   then the optimal is at .
Theorem 3 and Corollary 5 lead to Corollary 6.

Corollary 6	The Nash Equilibrium strategy is when the retailer sets  according to Corollary 5, sets  equal to  and the bidder follows the  – threshold strategy.
Example 1: Consider the case where the customer perceives the threshold as uniform and follows the  optimal strategy, i.e. . Assume that ,   and . Here ,   and . So Corollary 6(c)(ii) applies and the optimal  is at =0.532.
Here the intervals ,  and  are non-null and the expected returns to the retailer for  in these intervals are given by  , and  respectively. Figure 2 contains the plots of the expected revenue functions , and  over Panels A, B and C respectively as well as the optimal expected revenue (Panel D).  Panels A-C plot the entire functions via dashed lines and the optimal segments via solid lines over the interval between  and .
	Figure 2: Expected return to the retailer when  1,   and .
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Panel A: Function g1(s1)
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Panel B: Function g2(s1)
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Panel C: Function g3(s1)
	[image: ]Panel D: Optimal g(s1) 



Example 2: Suppose that  is uniform over ( and the reserve price  distribution is uniform over ().  Here . So Corollary 6(b) applies and the optimal  occurs at . Figure 3 is a plot of the expected revenue, in this case , to the retailer as a function of  . 
	Figure 3: Optimal Slider Location under Uniform Distributional Assumptions when  ,   and .
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4.2 Expected Revenue and Slider Design under Uniform Distribution and General Reference Price 
Given the nature of the slider, it seems logical that consumers anticipate the chance of a bid or offer being accepted to be uniformly distributed along the slider.  But we could anticipate their reference price distribution might exhibit other distributional forms.  In the following we illustrate how to numerically set optimal slider endpoints – we use the normal distribution for reference prices (with uniforms for slider and threshold distributions).
As earlier, customers perceive the threshold,, above which a bid will be accepted to be uniformly distributed over , resulting in , ).  Then using the expression for the retailers expected profit, }, and as before assuming that  , we can perform a simple one-dimensional search over s1 to find its optimal value. Figure 4 illustrates the expected revenue as a function of slider left most point  when reference prices are normally distributed with a mean of 0.5 and a standard deviation of 0.5/3 resulting in an optimal expected revenue of 0.1263 with the optimal  equaling 0.31.
	

Figure 4: Optimal Slider Locations Normally Distributed Reference Prices (mean 0.5, std. deviation 0.5/3)
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Given the numerical approach and flexibility of the normal distribution we can look at the impact of reference price distributional characteristics upon slider position and expected revenue.  Figure 5 shows the impact of increasing the mean of the reference distribution in Panel A and the impact of standard deviation in Panel B.
	Figure 5: Impact of mean and standard deviation upon slider positions
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	Panel A – Impacts of mean
	Panel B – Impacts of standard deviation



4.3 Optimal Design with Constrained Supply 	In many cases, the supply of items is large relative to the possible demand. Consequently, many authors consider the case of unlimited supply (e.g. Cai et al. 2009, Wilson and Zhang 2008, Fay 2008 amongst others).  However, it can often make sense to consider the case where it is likely that supply might be exhausted.  For instance, consider the case of Air Canada soliciting bids for a limited number of first/business class upgrades as illustrated in Figure 1.  Under such settings, there will only be a limited number of items, , available. In addition, there may also be a limited number of possible bids , e.g. the people who have purchased economy tickets and might be willing to upgrade if the price is right.
Suppose there are M customers and C possible items. The retailer sets the values of and   A customer’s bid, from the preceding sections, equals   (Here a customer bidding  receives a value  if the bid is acceptable and zero otherwise. The expected return to the customer for a uniform acceptance distribution is  whose first derivative with respect to  equals zero at .)  For the Priceline or platform situation, the retailer’s revenue is the difference between the bid price and the threshold, whenever the bid is larger than the threshold. However, in the airline or the supplier driven case, the revenue to the retailer is the actual bid if it is accepted. We will define two new quantities. The first is , the probability that a randomly selected customer’s bid will be successful in obtaining an item should one be available when the slider values are set at ). (Of course, some will not bid and have a probability equal to zero if the reserve price is less than , while those with high reserve prices will have the higher probabilities.) We also assume that all who can bid will bid. (Not an unreasonable assumption. In the airline context, an email is often sent with a slider. The customer having opened the email simply has to move the slider.) The second quantity is  , the expected revenue conditioned on knowing the bid of a randomly selected customer is accepted when the slider values are set at ) and an item is available. The probability that exactly  items will be sold is then  , with an associated expected revenue for the  items being . Thus, the expected revenue of using ) is given by:  For many cases, the normal approximation will be appropriate and the expected revenue of using ) is given by  
where  is the normal density with mean  and variance  ) and  the associated normal distribution function. Lemma 2 contains expressions for  and . (Proof is in the Appendix.) 

Lemma 2	Let and let . 
(a)The probability that a randomly selected customer will obtain an item should one be available when the slider values are set at ) is given by 
 	
(b) Suppose the return to the retailer equals the bid when it is accepted. Then the expected return of an accepted bid to the retailer who uses )  is given by 

where  if and is zero otherwise.
(c) Suppose the return to the retailer is the difference between the bid and the threshold whenever the latter is smaller. Then the expected return of an accepted bid to the retailer who uses )  is given by 
(5) where  if and is zero otherwise. 

4.3.1 Constrained Supply under Uniform Distributions	Consider the case of a supplier (e.g. Air Canada) hosted slider soliciting offers for goods, services or upgrades, where the retailer receives the full amount of the bid.  For ease of presentation, we will consider the case where =1 (this is not a strong restriction since one can always renormalize).  Assume customer reservation prices are uniform from 0 to 1 as =0 represents those who have no interest in submitting offers via a slider and =1=H indicates the value of the outside option.  In order to avoid strategic customer behavior, i.e. customers purchasing lower cost products with a potential known upgrade cost via the slider, we assume the firm has a random acceptance threshold that is uniformly distributed from 0 to 1.  As before, it makes sense to take .  A customer with a reservation price  then bids ). A customer with  wins if the threshold is lower than  and this probability is .  A customer with  wins if the threshold is lower than  and this probability is . Note that  since . As a result, some customers will bid their reserve prices and others will bid . From Lemma 2  and +.
Figure 6 displays an example of the impacts of constrained supply. The figure illustrates expected revenue (Panel A) and unit revenue (Panel B) for a setting with M=30 customers and either 4,8,12 or 30 units of capacity.  As the figure illustrates, constrained total revenue decreases with decreasing supply but per unit revenue increases.  In Figure 6, the lines where C=M=30 represent the unconstrained case and while unit revenues are different (as the supplier receives the full bid value) the optimal slider starting point,  is the same as our earlier results in Figure 3. 
	Figure 6: Expected Revenue with Constrained Supply, Customers (M)=30
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Panel A: Expected Revenue M=30
	[image: ] 
Panel B: Expected Unit Revenue M=30


[bookmark: _Hlk41578632]Figure 6 indicates that for moderate levels of demand, i.e. from unconstrained (M=C=30) to demand equal to a little more than twice capacity (M=30, C=12) that optimal slider starting values are around ½ of the outside option ( between .4 and .6 for H=1) and result in expected revenues of .25 to .6 (Panel B) per unit of capacity (i.e. discounts of 40% or more and typical of those seen at Priceline.com). 

5. Changing the Consumer Perceptions of 	Earlier analysis assumes that consumers perceive the chances of their offers being accepted to be uniformly distributed along the slider.  A uniformly distributed acceptance policy seems logical under circumstances where upon first appearance the slider scroll is positioned at one of the ends of the slider (per panel A in Figure 1 at Priceline) or in the middle of the slider, but when the slider starting position is purposely off center (per Panel B in Figure 1 at Air Canada) consumers may anticipate alternative meanings of the slider.
We now allow for the potential for the slider to be initialized off center. Let  be the slider starting position. Now assume that customers perceive the threshold above which a bid will be accepted is the value of a random variable   represented by a triangular distribution, i.e.
 P[
As will be shown if   has triangular distribution, then the optimal customer strategy is a special case of the threshold policy  introduced earlier in Section 3.4.

5.1 Optimal Customer Bids under the Triangle Distribution	A customer will place a bid b to minimize the expected cost  .  In Lemma 3, we provide the customer’s expected return for a given bid and slider set up while Lemma 4 gives monotonicity properties of the expected return. This leads to the customer’s optimal strategy in Theorem 4.
Lemma 3	Suppose the customer believes that the acceptance price is a triangular distribution over the values .
(a) The expected cost to the customer of bidding  is 

(b) The expected cost to the customer of bidding  is 

Proof
(a) The proof follows by noting that the customer believes the bid of  will be accepted if the value of the triangle random variable over  turns out to be less than or equal to  and this occurs with a probability equal to  
(b) The proof follows by noting that the probability that   is less than the bid  is 
The function  is only an expected cost for . Similarly, the function  is only an expected cost for . However, considered as functions, it is useful in Lemma 4 to investigate their properties over all possible values for . Parts (a) and (b) provide monotonicity properties for   and . Parts (c) and (d) consider the locations of   and  relative to the critical points,   and  , of . The proof is in the Appendix.

Lemma 4
(a) The function   is a strictly decreasing function of   between  and  and increasing thereafter.
(b) Define . Then the function  decreases as a function of  to a local minimum at , then increases to a local maximum at  and thereafter decreases, where  and 
(c) The upper value, , of the range we need to consider for bids is between the local minimum and the local maximum for , i.e. .
(d) The local minimum  if and only if if 
We are now ready to state the optimal policy for a customer for the triangular case.
Theorem 4
(a) If , then a customer’s expected cost minimising bid is the   - threshold strategy.
(b) If , then a customer’s expected cost minimising bid is the  – threshold strategy, where where 
Proof
(a) If , then from Lemma 4 (c) and (d),  . Over the range (, the function  is an increasing function of . So need only consider bids with . But for bids in this range, the expected cost is given by  and from Lemma 4(a), the customer’s expected cost minimising bid is  , where  denotes a customer’s reserve price.
(b) If , then from Lemma 4 (c) and (d),   . So for bids  between  and , the minimum cost bid is at  since  decreases from  to  and then increases to . The result now follows on noting that, from Lemma 4(a),  decreases from  to  .

5.2 Optimal Retailer Behavior under the triangle Distribution	For the triangle case, the retailer must decide on three quantities ,  and . The problem is considerably simplified by using Lemma 5 below, which reduces the retailer’s problem to maximizing over only one variable, .  Lemma 5 shows that once the value of  is set, optimal values of  and  are straightforward. So, the problem of optimizing over the three variables ,  and  is reduced to optimizing over one variable, . 

Lemma 5	Fix the value of  Then the expected revenue to the retailer is maximised by taking  and .
Proof	The customer’s threshold is lower in part (b) of Theorem 4 than in part (a) since . So the retailer should choose . Taking  is equivalent to taking  since from   Theorem 4 (a), the customer’s strategy is to follow a  strategy. Taking  means that  is never larger than  , thus ensuring that the bid is the maximum possible.  From Lemma 5, we will now assume that, given an , the value of  is equal to  and that of  to . This and Theorem 4 proves the following corollary which is that the customer’s optimal strategy belongs to the class of  strategies that were previously analyzed.

Corollary 8	A customer’s expected cost minimizing bid, when the retailer acts optimally, is the minimum of the reserve price and . Corollary 9, derived from Theorem 2 with , provides the retailer’s optimal .

Corollary 9	Assume both the retailer uses  and . The optimal value of  is given by the following.
(a) Suppose that If , then the optimal max(
Assume that . Then the following hold.
(b) If  , the optimal   is 
(c) If , the optimal   is and t2<r2
(d) If  then the following hold.
(i) If  3, then the optimal is at max(.
(ii) If  3 and   then the optimal is at max(.
(iii) If  3 and   then the optimal is at .
Corollary 10 below follows by applying Theorem 2, and Corollaries 8 and 9.

Corollary 10	The Nash Equilibrium Strategy is given by the retailer choosing  according to Corollary 9, then choosing  to equal  and . The customer follows the  threshold strategy.
Example 3: As earlier, consider a setting where thresholds are uniform with ( with a consumer reference price distribution uniform with () along with . Then the optimal customer strategy is a   – threshold strategy. Note that this is a non-trivial strategy in that   Note that  and . From Corollary 10, the optimal  is . 
It is instructive to compare Example 3 with Example 2 since the parameter values are identical. The only difference is that, in Example 2, we assume that the is no starting point. The example indicates, if in fact consumers are influenced by the starting point  for the slider and the customer perceived that the threshold value is uniform over the slider range. In Example 3, the slider is initialized at   o the right of center has a lower left endpoint. 

5.2 Comparison of Uniform and Triangular Slider Interpretations	In the following, we compare the optimal bids placed by consumers – ) under the uniform slider assumption and  under the triangular assumption. We consider the case of the earlier sections where reference prices and threshold values are uniformly distributed (0,1) and the outside option has value 1. 
The expected revenue to the platform or retailer is increased by about 12% with the triangular (0.139) assumption as compared to the uniform (0.124) as more bids are generated owing to increased consumer participation since the starting point of the slider is decreased under the triangular versus under the uniform assumption).  Figure 7 illustrates the differences in consumer bidding behavior as impacted by their interpretations of sliders.  
	Figure 7: Optimal Consumer Bids under Uniform and Triangular Slider Interpretations
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The figure illustrates that the triangular assumption results in a wider range of bids placed (versus the uniform) with a lower slider starting point () and higher max bid ( > ) because of the slider starting point being to the right of center.  The difference in slider starting points and bidding thresholds (B) increases the range of bids if consumers perceive their success to follow a triangular distribution. The perceived triangular distribution while resulting in a reduced expected bid, 0.63 as compared to 0.65 with the uniform, conditioned on a bid being placed, results in an increased expected bid of 0.42 versus 0.36 for the uniform.  The expected bid increases with the triangular as the leftward movement of the slider starting point s1 results in fewer ‘0’ or no bids from those with reference prices below s1 and results in an increased expected revenue as the number of bids increases.

6. Summary	Mobile commerce at face level seems like traditional online selling but changes to user interactions may change consumer perceptions and their behavior and as a result impact firm revenue.   While use of a slider versus text input may seem like a subtle change, the visual cues of the slider have the potential to impact consumer perceptions of the potential success of their offers.  In our paper, we take the first step towards describing how sliders should be formatted for optimal platform or service provider revenue.  Distinct from a behavioral view, we assume consumers are rational expected cost minimizers.  We allow consumer offers to be influenced by slider design, but these changes are rational as their perceptions of the chance their offers are accepted (i.e. the distribution of successful offers) are influenced by the slider layout.
We show that sliders should have a finite range with the maximum set to the outside (non-slider) option and that the lower limit should often be set to discourage some consumer participation (i.e. larger than the lowest product valuation) in order to maximize firm revenue.  As capacity constraints are added, the lower limit of the slider is increased to further reject more low value consumers.  Similarly, as consumers become more heterogeneous, i.e. increased variance in their reference valuation for the good or service, the optimal slider lower limit is decreased in an effort to increase consumer participation.
We also show that offsetting the slider starting position (as compared to the middle or an endpoint) provides for increased consumer participation (through shifting the lower limit to the left), but results in only a small decrease in expected offers/bids owing to an increase in the maximum bid offered.  The net result of these changes is an increase in firm expected revenue.
Much of our insight, while consistent with approaches in the literature, stems from simplifying assumptions about consumers and suppliers.  Supplier assumptions, while impacting firm revenue, should not dramatically impact our insight as the threshold policy deployed by consumers stems largely from their perceptions of outcomes.  Further our framework, the -threshold policy deployed by consumers, and our analytical insights reduces most slider design decisions to single-dimensional searches which allow for optimal design under a wide variety of distributional assumptions.
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